منابع مشابه
Simplicity of some automorphism groups
a r t i c l e i n f o a b s t r a c t Let M be a countably infinite first order relational structure which is homogeneous in the sense of Fraïssé. We show, under the assumption that the class of finite substructures of M has the free amalgamation property, along with the assumption that Aut(M) is transitive on M but not equal to Sym(M), that Aut(M) is a simple group. This generalises results of...
متن کاملSimplicity of the automorphism groups of some Hrushovski constructions
we show that the automorphism groups of certain countable structures obtained using the Hrushovski amalgamation method are simple groups. The structures we consider are the ‘uncollapsed’ structures of infinite Morley rank obtained by the ab initio construction and the (unstable) א0-categorical pseudoplanes. The simplicity of the automorphism groups of these follows from results which generalize...
متن کاملAUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملSimplicity of some twin tree automorphism groups with trivial commutation relations
We prove simplicity for incomplete rank 2 Kac-Moody groups over algebraic closures of finite fields with trivial commutation relations between root groups corresponding to prenilpotent pairs. We don’t use the (yet unknown) simplicity of the corresponding finitely generated groups (i.e., when the ground field is finite). Nevertheless we use the fact that the latter groups are just infinite (modu...
متن کاملAutomorphism Groups of Some Affine and Finite Type Artin Groups
We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type Ãn−1 and C̃n−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.05.021